The realization space is [1 0 1 x1 - 1 0 1 0 1 -x1^3 + x1^2 - x1 + 1 -x1^2 - 1 x1 - 1] [0 1 1 -x1 - 1 0 0 1 1 x1^3 + x1^2 + x1 + 1 -x1 - 1 -x1^2 - 1] [0 0 0 0 1 1 -1 x1 -x1^3 + x1 -x1^2 - x1 x1^2 - x1] in the multivariate polynomial ring in 1 variable over ZZ within the vanishing set of the ideal Ideal (-2*x1^15 - 2*x1^14 + 2*x1^13 + 6*x1^12 + 6*x1^11 - 6*x1^10 - 10*x1^9 + 2*x1^8 + 4*x1^7) avoiding the zero loci of the polynomials RingElem[x1, x1 + 1, 2, x1^2 + 3, x1 - 1, x1^2 + 1, x1^2 + x1 + 2, x1^2 - x1 + 2]